Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ethyl 7-exo-acetoxy-4-phenyltricyclo-[4.2.1.0^{2,5}]non-3-ene-3-carboxylate

Robert W. Jordan,^a William Tam^a and Alan J. Lough^{b*}

^aDepartment of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1, and ^bDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail: alough@chem.utoronto.ca

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{C-C}) = 0.007 \text{ Å}$ R factor = 0.051 wR factor = 0.142Data-to-parameter ratio = 7.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The regio- and stereochemistry of the title compound, $C_{20}H_{22}O_4$, has been established by X-ray analysis. The bond lengths and angles are normal.

Received 2 October 2003 Accepted 6 October 2003 Online 15 October 2003

Comment

Recently, we studied the remote substituent effects on ruthenium-catalysed [2 + 2]-cycloaddition reactions between 2-substituted 5-norbornenes and unsymmetrically substituted alkynes. Four different regio- and stereoisomers could be formed in the cycloadditions. When the substituent of the norbornene is an *exo*-OAc group, two regioisomers were obtained in a ratio of 4:1. These regioisomers were separated by fractional recrystallization. The regio- and stereochemistry of the major isomer, (I), was established by a single-crystal X-ray diffraction analysis.

Experimental

Addition of *exo-*2-acetoxy-5-norbornene and ethyl 3-phenyl-propiolate to Cp*RuCl(COD) in THF at 298 K provided two regio-isomers in a ratio of 4:1. Fractional recrystallization in hexanes provided the major regioisomer (I). Suitable crystals were grown from hexanes.

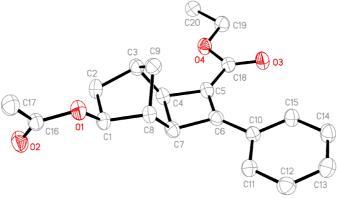


Figure 1 View of the molecule of (I), with the crystallographic labelling scheme. Displacement ellipsoids are at the 30% probability level and H atoms have been omitted.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Jordan, Tam and Lough · C₂₀H₂₂O₄

organic papers

Crystal data

$C_{20}H_{22}O_4$	$D_x = 1.295 \text{ Mg m}^{-3}$
$M_r = 326.38$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁	Cell parameters from 18043
a = 9.7510 (14) Å	reflections
b = 5.5920 (9) Å	$\theta = 2.6 - 25.0^{\circ}$
c = 15.3550 (18) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 90.934 (10)^{\circ}$	T = 150 (1) K
$V = 837.2 (2) \text{ Å}^3$	Needle, colourless
Z = 2	$0.14\times0.10\times0.05~\text{mm}$

Data collection

Nonius KappaCCD diffractometer φ scans and ω scans with κ offsets Absorption correction: none 5502 measured reflections 1647 independent reflections 1182 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.142$ S = 1.051647 reflections 220 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0749P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.16 {\rm e \ \mathring{A}}^{-3}$ $\Delta\rho_{\rm min} = -0.16 {\rm e \ \mathring{A}}^{-3}$ Extinction correction: SHELXTLExtinction coefficient: 0.058 (11)

 $R_{\rm int}=0.080$

 $\theta_{\text{max}} = 25.0^{\circ}$ $h = -11 \rightarrow 11$

 $k = -6 \rightarrow 6$ $l = -18 \rightarrow 18$

All H atoms were placed in calculated positions, with C–H distances ranging from 0.98 to 1.00 Å, and included in the refinement in a riding-motion approximation, with $U_{\rm iso}=1.2U_{\rm eq}$ (1.5 $U_{\rm eq}$ for methyl H atoms) of the carrier atom. In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Data collection: *COLLECT* (Nonius, 1997–2002); cell refinement: *DENZO–SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN*; program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2001); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors acknowledge NSERC Canada and the University of Toronto for funding.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Nonius (1997–2002). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.12 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.